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Abstract--The hydraulic fracture is modelled as an ellipse in an infinite elastic medium with an internal fluid 
pressure and loaded under biaxial stresses at infinity. The available stress function for this model has been evaluated 
numerically, and the magnitudes of the stresses generated around the crack calculated for a variety of loading 
conditions and crack orientations. Fracture initiation is predicted from the Grittith maximum tensile stress criterion. 
The location of the maximum tensile stress around the crack is recorded and it is found that for many conditions of 
applied stresses and crack fluid pressure, the hydraulic shear fracture has a symmetrically developed maximum 
tensile stress and fracture initiation will occur by growth along the direction of the crack. It is also predicted that 
fracture initiation will occur when the ratio of fluid pressure to applied least principal stress is considerably less than 
one. The elastic strain energy fields around elliptical hydraulic flaws have been calculated, and in particular, the 
change in strain energy upon introduction of a small flaw, and the change in strain energy upon growth of this flaw, 
have been investigated. The results allow an evaluation of the second part of the Griffith criterion--that fracture 
growth is accompanied by a decrease in strain energy--for hydraulic fractures. Changes in strain energy with small 
increases in fluid pressure provide a physical basis for dilatancy hardening and fracture instability. Quasi-static 
growth from a flaw is modelled by calculating changes in strain energy for unit increases in half length. The 
distinction between fractures which show an increasing and a decreasing rate of change in strain energy with 
increasing length, and between fractures which may only extend spontaneously for short distances and those which 
may show extensive spontaneous growth on the basis of the rate of change of strain energy with length, is made. A 
gradual drop in crack fluid pressure once the threshold for fracture initiation has been passed may promote the 
extent to which spontaneous crack growth occurs. 

The formation of syntectonic veins, particularly in rocks being deformed under low grade metamorphic 
conditions, is often the most abundant evidence of natural hydraulic fracturing in rocks. Commonly observed 
geometric features of syntectonic veins--length, simple tapering, symmetric and asymmetric forking, branching, 
irregular zig-zag traces, en 6chelon patterns--are discussed primarily with reference to the strain energy model for 
growth established, and the geometric variation is interpreted in terms of variation in applied stress and fluid 
pressure conditions and the rate of change of stored strain energy with crack growth. In particular, terminal 
branching arises when the minimum stress changes from a symmetric to an asymmetric location at the tip of a 
growing shear fracture, and terminal forking results when there is an increase in the energy release rate during crack 
growth, and may be symmetric or asymmetric depending on the location of the minimum stress at the crack tip at the 
time of forking. 

I N T R O D U C T I O N  

HYDRAULIC frac tur ing descr ibes  the process  of  f rac tur ing 
in which load  para l le l  (tensile) or  l oad  ob l ique  (shear) 
fractures a re  p r o d u c e d  th rough  the ac t ion  of  a fluid under  
pressure  within the crack.  H y d r a u l i c  f ractur ing of  rocks  
occurs  dur ing  the burial ,  dewater ing  and  m e t a m o r p h i s m  
of  sed imenta ry  sequences as very large vo lumes  of  fluid 
are  released (Hol land  & L a m b e r t  1969, Price 1975, 
M a g a r a  1975a, 1976, Fyfe 1976, Nor r i s  & Henley  1976), 
and  also dur ing  the fo rma t ion  of  m a n y  m a g m a t i c  sheet  
in t rus ions  (Po l l a rd  1973a, 1979, Escher  et al. 1976). 
Hydrau l i c  f ractur ing has  also been deve loped  as an  
engineering technique  to  increase  p roduc t iv i ty  in oil  and  

Nomenclature--Sl, $2 principal stresses applied at infinity; P fluid 
pressure within the crack ; 2 ratio P/S2; fl orientation of crack long axis 
to applied stress SI; ~0 ellipse defining the periphery of the crack; 
C crack half length ; al, a2 principal stresses of the disturbed stress field 
generated around the flaw. 

gas fields ( H o w a r d  & F a s t  1970). In  general ,  an increase  in 
the pressure  of  the fluid wi thin  a c rack  in a mate r ia l  under  
t r iaxial  compress ion  will reduce the stresses ac t ing on the 
fracture th rough  the law of  effective stress unti l  the crack  
becomes  uns table  and  p ropaga tes .  This  a p p r o a c h  to the  
mechanics  of  hydrau l ic  f ractur ing is dea l t  with by  Hub-  
bert  & Will is  (1975), H a i m s o n  & F a i r h u r s t  (1967), Secor  
(1968), Phi l l ips  (1972) and  Price & H a n c o c k  (1972). 

The  present  work  is a numer ica l  eva lua t ion  of a 
theore t ica l  mode l  of  a hydrau l i c  f racture to p rov ide  a 
basis for the unde r s t and ing  and  in te rp re ta t ion  of  the 
fo rmat ion  of  na tu ra l  hydrau l ic  fractures dur ing  the 
de fo rmat ion  of  rocks,  and  stems in pa r t i cu la r  f rom studies 
of syntec tonic  veins p roduced  by hydrau l ic  f ractur ing in 
deformed sed imenta ry  rocks  (e.g. Beach 1975, 1977). 

Exper imenta l  s tudies of  the  fracture process  and  geo- 
met ry  in l a b o r a t o r y  mate r ia l s  used as ana logues  to rocks  
are  frequently l imited to cond i t ions  of  uniaxia l  stress and  
wi thout  the presence of  a fluid in the c rack  (e.g. Brace & 
Bomba la k i s  1963, Hock  & Bieniawski  1965, Laj ta i  1971). 
Similarly,  theore t ica l  s tudies of  rock  fracture often con-  
sider a c rack  under  uniaxia i  stress only (Secor 1968, 
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Cottereli 1972, Lajtai 1971, 1974). The extension of these 
models to shear fracturing has been considered for dry 
fractures by Hoek & Bieniawski (1965) and by Cotterell 
(1969, 1972). The work of Murell & Digby (1970a, b) 
therefore represents an important step forward in 
theoretical fracture studies, because these authors derive 
equations for stresses in three dimensions around the 
periphery of an ellipsoidal flaw under triaxial stress, with 
or without an internal fluid pressure, and also for 
conditions of crack closure. The recognition of many 
natural arrays of hydraulic shear fractures (Currie & 
Ferguson 1970, Phillips 1972, Shearman et  al. 1972, 
Currie & Nwachukwu 1974, Moore 1975, Escher et al. 

1976, Beach 1977, Price 1977) in deformed rocks makes it 
desirable to extend and evaluate models of fracture in this 
field. 

The process of fracture growth in rocks is clearly 
complex, Firstly, it may involve slow crack extension 
under constant stress, called static fatigue (Martin 1972, 
Scholz 1972), and produced by stress corrosion at the 
crack tip (Wiederhorn 1967, Wiederhorn & Bolz 1970, 
Evans 1974, Evans & Johnson 1975, cf. Bieniawski 1967, 
fig. 1). Secondly, fracture growth may involve formation, 
interaction and coalescence of tensile and shear micro- 
fractures (Scholz 1968, Tchalenko 1968, Lajtai 1971, 1974) 
and thirdly, very rapid crack growth, generating shock 
waves (Price 1968, Gash 1971) and additionally, crack 
forking (Cotterell 1965, 1966, Bieniawski 1967) may 
occur. Many natural rock fractures are seen as extensive, 
single fracture surfaces, and whilst Lajtai (1977) discusses 
the origin of such features as tensile fractures, the problem 
of the origin of single shear fracture surfaces, in contrast to 
a zone of microfractured and damaged material traversed 
by a through-going shear fault (Lajtai 1971, Murrell 
1977), is not clearly understood. Such fractures are 
commonly seen as joints (Price 1959, Lajtai 1977) in 
rocks, and also as the filled fractures of veins and dykes, 
etc. The work discussed in this paper is largely concerned 
with models that help understand the origin of single 
shear fracture surfaces through the mechanism of hy- 
draulic fracturing. 

Ideas on the fracturing of rocks and many other 
materials (cf. Liebowitz 1972) usually reduce to the 
concepts of stress concentrations at a crack tip (treated by 
Inglis 1913) and energy balance during crack growth 
(introduced by Griffith 1921). The model normally chosen 
for the crack is that of a narrow elliptical cavity in an 
isotropic elastic medium subjected to a uniform stress at 
infinity. One approach to the theory of fracture is to 
equate the (tensile) stress concentration at or near the 
crack tip to the theoretical strength of the material. A 
second approach assumes that the change in strain energy 
as a crack grows is at least equal to the energy associated 
with the formation of new crack surfaces (and related 
dissipative effects). 

The extensive and detailed work of Murrell & Digby 
(1970a, b, 1972) has shown that the prediction of fracture 
initiation from a knowledge of the maximum tensile stress 
developed on the periphery of an ellipsoidal flaw in an 
elastic medium is the most valid approach. They show 

that the three-dimensional ellipsoidal flaw is not essen- 
tially different from the two-dimensional elliptical flaw, 
and that crack initiation from a flaw is independent of the 
magnitude of the applied intermediate principal stress, a 
factor built into many theories of rock fracture (see 
Murrell 1977). Further, Murrell & Digby (1972) show 
that the idea that a reduction in strain energy allows 
fracture initiation is a necessary but not a sufficient 
condition for crack propagation from a flaw, but that the 
condition that the local maximum tensile strength on the 
crack periphery equals the bond strength of the material is 
a sufficient condition for crack initiation. In this work, 
both stress and strain energy models are used. 

THE MODEL 

Use has been made of the stress function (that is, a 
function of X, Y that satisfies the conditions of static 
equilibrium and the biharmonic equation for elastic strain 
compatibility, and the second partial derivatives of which 
give the stress components a~, ay, z~y within the boun- 
daries chosen: see Timoshenko & Goodier 1951) giving a 
numerical solution to the stresses and displacements 
around an elliptical crack under uniaxial stress, as given 
by Pollard (1973b), cf. Koide & Bhattacharji (1975). The 
model for a crack with internal fluid pressure under 
biaxial compression is then built up as follows, applicable 
to hydraulic fracturing in porous media where the law of 
effective stress applies throughout. The stresses around 
the ellipse are calculated separately for applied uniaxial 
effective stress S 1-P and S2-P at orientations fl and/~ + 90 ° 
respectively, and summed to give the stresses around the 
crack under biaxial compression. The stresses around the 
same ellipse in the absence of applied stresses at infinity 
but containing an internal hydrostatic pressure (P) are 
then added to the previous result, and the desired model is 
then obtained. The detailed evaluation of the stress 
function for uniaxial stress is taken from Pollard (1973b). 
That for the internal hydrostatic stress is not given by 
Pollard, and equations derived by P. Gash (personal 
communication) are used (cf. Pollard & Johnson 1973). 
Thus the model presented here differs from that used by 
Pollard (I973a) because the application here is to hy- 
draulic fracturing in rocks where the fluid phase per- 
meates throughout the rock, rather than being confined 
entirely to the crack, as with the magmatic sheet in- 
trusions discussed by Pollard. 

Initially, a Cartesian framework is defined with the 
crack extending along the X-axis. The points at which 
stresses are required around the crack are defined in terms 
of X, Y. The coordinates are then transformed into 
elliptical co-ordinates ~, 0, because the stress function is 
evaluated in terms of them. The ellipse G0( = 0.01 through- 
out this paper) defines the crack boundary. In terms of 
Cartesian co-ordinates, crack half-lengths are allowed to 
vary from 1 to 10 along X. The stress equations are solved 
at each intersection of integer X, Y grid lines in fields from 
X, Y = 30, 30 to 80, 50. This ensures that the disturbed 
stress field around the crack has fallen to the regional 
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Fig. 1. Figures 1-4 show graphs of applied effective stress against crack internal pressure for/~ = 0, 30, 60 and 90 ° respectively. 
Values of the minimum stress off the crack are contoured, and the field where these stresses are tensile (negative) is shaded. To 
the right of the dashed line, this minimum stress is positioned symmetrically at the crack tip. Figure 1 is for/~ = 0 °. Maximum 

applied effective stress in all figures = 1.0. 

applied stresses by the time the edge of the field is reached 
(cf. Pollard 1973a). Programmes J~a~ve been written in 
Fortran to carry out the lengthy calculations involved. 

STRESS DISTRIBUTION AROUND HYDRAULIC 
FRACTURES 

Using the criterion that fracture initiation occurs from 
points of maximum tensile stress generated by elliptical 
flaws, the stress distribution around elliptical hydraulic 
flaws is examined with particular reference to the gener- 
ation of tensile stresses at crack tips and the prediction of 
fracture growth from such data. 

The results are presented firstly in terms of the magni- 
tude of the minimum stress off the crack tip. A number 
of workers (e.g. Cotterell 1965, Lajtai 1972) have 
suggested that while in theory the magnitude of the 
maximum tensile stress around a flaw rises with prox- 
imity to the crack tip, high stresses predicted b y  the 
theory near the tip are unrealistic and in practice would 
be dissipated by plastic deformation. Lajtai (1972) 
suggests that the stress generated a short (arbitrary) 
distance off the tip is a more reliable and realistic 

guide to the stress perturbation and condition of crack 
initiation from the flaw. In this work, with stresses 
calculated at integer values of X, Y and with the crack 
lying along X = 10.5 to + 10.5, the closest position to the 
crack tip is the point X ---- 11, Y = 0 (cf. index in Fig. 5), 
this being an arbitrary decision to accord with the idea of 
Lajtai (1972). The position at which the minimum value of 
a2 (negative stress is tensile) generated around the flaw is 
found. For many conditions of applied effective stress the 
position of the minimum stress lies symmetrically off the 
crack, a situation found only when fl = 0 ° for cracks 
without an internal fluid pressure (Hock & Bieniawski 
1965, Lajtai 1971). The results are shown in Figs. 1-4 
separately for the different crack orientations fl = 0, 30, 
60 and 90 ° . The graphs are plotted as the ratio of applied 
effective stresses against the value of the fluid pressure, 
and the magnitude of the minimum stress off the crack for 
these conditions is then contoured, the field where this 
minimum stress is tensile ( -ve )  being shaded in the 
figures. In addition, the dashed lines on the figures 
separate the fields of symmetrically developed minimum 
stress from the fields of asymmetrically developed mi- 
nimum stress. If the tensile stress is of sufficient magnitude 
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Fig. 2. ~ = 3 0  ° (also see Fig. 1). 
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Fig. 3. ~ = 60 ° (also see Fig. 1). 

to cause failure, these lines represent the transition from 
symmetrical to asymmetrical failure of a crack of given 
orientation. This is not the same as the transition from 
tensile to shear failure discussed by Murrell & Digby 
(1970a) in terms of the relative magnitudes of the stresses 
applied at infinity. 

Using the criterion that fracture propagation occurs 
from the point of maximum tensile stress, the data in Figs. 
1-4 show that for many conditions of applied effective 
stress and orientation, both shear and tensile hydraulic 
fractures may initially propagate along their length. This 
is clearly important for a further understanding of the 
formation of single, straight shear fractures commonly 
observed in nature. Figure 1 is in agreement with results 
on dry fractures, while Fig. 2 presents a new concept to the 
extent that the maximum tensile stress is still positioned 
symmetrically at the crack tip for all conditions where 2 is 
greater than 0.5 for the orientation of 30 °. Figures 3 and 4 
show that such symmetrically positioned maximum ten- 
sile stresses persist for high values of crack fluid pressure 
for orientations of 60 and 90 ° . 

In Fig. 5 the data are replotted in terms of/7 vs 2, 
separately for the range of minimum applied effective 
stress. In these graphs the value of the minimum stress off 
the crack is contoured and the location of this stress 

recorded in terms of four separate positions around the 
crack as shown in the key to Fig. 5. This presentation 
emphasises the conditions for which a symmetrically 
located maximum tensile stress is developed. If it is 
assumed that a tensile stress at the flaw of magnitude a2 = 
T = - 1.0 is needed to initiate fracture from the flaw, the 
magnitude of the crack fluid pressure needed to generate 
this tensile stress for given conditions of/7 and P2 can be 
shown as in the first graph of Fig. 6. Only the segements of 
the curves for each value of P2 for which the designated 
value of tensile stress is achieved are shown, the portions 
of these curves lying beneath the dashed line having this 
specified value of minimum stress located symmetrically 
at the crack tip (cf. Fig. 5). The other three graphs in Fig. 6 
show the same relations as the first, but assume that a 
gradually decreasing value of minimum stress, a2 = T = 
-0.75,  -0 .5  and -0 .25 respectively, represents the 
threshold for fracture initiation from the flaw. 

From these curves it can be seen that at a given value of 
minimum applied effective stress P2, the magnitude of the 
fluid pressure within the crack needed to generate a given 
minimum stress off the crack varies considerably. These 
curves give an idea of the maximum values of fluid 
pressure that may exist in a series of variably oriented but 
unconnected flaws in a material at the threshold where 
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Fig. 4. /7 = 90 ° (also see Fig. 1 t. 
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Fig. 5. G r a p h  o f  fl vs 2 for  five va lues  o f m i n i m u m  app l i ed  effective s t ress  P 2  = 0.1, 0.3, 0 .5 ,0 .7  a n d  0.9, w i th  the  m a g n i t u d e  o f  the  
m i n i m u m  stress  o f f t h e  c r a c k  c o n t o u r e d ,  a n d  its l o c a t i o n  i n d i c a t e d  in t e r m s  o f  fou r  pos i t i ons  A, B, C a n d  D as  def ined  in the  key  

( b o t t o m  right) .  

one or more of these flaws is about  to propagate. Thus, in 
the first graph of Fig. 6 cracks oriented at 90 ° are seen to 
be able to sustain higher fluid pressures than those at 30 ° , 
etc., and variations in fluid pressure throughout a material 

may exist. In contrast, if the fluid is not isolated in 
unconnected pores but has a more or less uniform 
pressure through a material, Fig. 6 will predict the 
orientation at which the tensile stress threshold for crack 
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Fig. 6. G r a p h s  of f l  vs P s h o w i n g  the  c o n d i t i o n s  o f  m i n i m u m  app l i ed  effective s t ress  P2  needed  to  g e n e r a t e  a m i n i m u m  stress  off  
the  c r a c k  o f  cr 2 = - 1.0, - 0 . 7 5 ,  - 0 . 5  a n d  - 0 . 2 5  respect ively.  Be low the  d a s h e d  cu rve  this  m i n i m u m  stress  is deve loped  

symmet r i c a l l y  a t  the  c r a c k  tip. 
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initiation will be reached for conditions of gradually rising 'o 
fluid pressure and given applied effective stress P2. This o8 

problem is relevant to many geological situations where ~ 06 
dehydration and a gradual rise in fluid pressure gives rise o4 
to fracturing of rocks, and it will be discussed further, later 

0.21 
in the paper. 

0 

P2 = O.l 

f /  
/ / / 

CALCULATION OF STRAIN ENERGY 

Murrell & Digby (1972) show that the minimum stress 
criterion is a sufficient condition for prediction of fracture 
initiation, and that fracture initiation, involving a re- 
duction in stored elastic strain energy, constitutes a 
necessary but not a sufficient condition for this process (cf. 
Perkins & Krech 1968). Elastic strain energy fields around 
hydraulic cracks and the second part of the Griffith 
criterion will be examined numerically. 

Strain energy fields around cracks can be calculated 
directly from the stress models presented without any 
further assumptions. Stress components were calculated 
at each X, Y point on a regular grid around the elliptical 
flaw of length/width ratio of about 100/1 (G0 = 0-01). At 
each point the distortional and volumetric strain energy 
components were calculated using the standard relations, 
as given, for example, by Jaeger & Cook (1969, p. 116). 
These are then summed for all the X, Y points in the field 
examined to give the total distortional and volumetric 
strain energy around the crack. From these are subtracted 
the values of the strain energy over the field considered 
due to the application of the biaxial effective stresses at 
infinity in the absence of a crack. The result is the change 
in strain energy on introducing a crack of specified length 
and orientation into the area over which the calculations 
were carried out. This is referred to as the energy of 
formation of the crack. To be meaningful, the field of 
calculation must extend sufficiently far away from the 
crack that the magnitudes of the stresses a 1, a2 have 
returned to the regional or applied stress magnitudes (cf. 
Pollard 1973). In this work, crack half lengths lying along 
X = 0 --* 0.5 to 0 ~ 9.5 in a field X = 0 - - , + 8 0 ,  Y = 
- 2 5  --, + 25 are considered, and the stresses and strain 
energies calculated at every integer X, Ygrid intersection, 
with the crack centre at X, Y = 0. The values of the elastic 
moduli used in the strain energy calculations are constant, 
and the strain energy values reported should be used as 
relative values only, recording increases or decreases in 
stored elastic strain energy during initial fracture for- 
mation and fracture growth. 

The results of two different uses of the strain energy 
model are reported here. Firstly, consideration is given to 
the question of whether the introduction of a small crack 
into a previously unflawed elastic medium is accom- 
panied by a reduction in stored strain energy, and hence 
whether such flaws are formed spontaneously and stably. 
Secondly, the problem of growth from small stable flaws is 
examined by calculating the change in stored strain 
energy as the crack half-length is allowed to increase 
under constant applied stresses, fluid pressure and 
orientation. 

~o P2 =0.3 

0 8  

0 6  

0 4  

0"2- 

0 

1-0- 

0 8 -  

0 4 -  

0 2 - 

0~ 

P2 = 0.5 

i-o P2 =0"7 

0'8 

0.6 

(3 "4' 

0 2 .  

0 

; 0 -  

0.8- 

0"6- 

. t  o .  2 

0 2 -  

0 
-300 

P2=0 '9  

-250  - 2 0 0  -150 -100  

Total strain energy 
-sb o 

Fig. 7. Curves for each crack orientation on separate graphs for each 
value of minimum applied effective stress P2 showing the variation in 
strain energy of formation with the magnitude of 2 of a short crack of 

constant half-length (C = 1.5). 

RESULTS 

Figure 7 shows the change in stored strain energy 
associated with the introduction (i.e. formation) of a small 
crack of constant half-length (C = 1.5). The graphs are 
plotted separately for each value of minimum applied 
effective stress P2 as 2 vs change in strain energy, and on 
each graph a curve is shown for each orientation of the 
flaw 0, 30, 60 and 90 °. Only those portions of the curves 
where a reduction in strain energy occurs are shown on 
these graphs. They therefore represent the range of 
conditions for which the spontaneous formation of a flaw 
is energetically possible. 

Figure 7 also illustrates a further important point when 
natural hydraulic fracturing is being considered. Much 
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natural hydraulic fracturing occurs in response to dehy- 
dration and fluid release during progressive metamor- 
phism of sedimentary sequences, and will therefore result 
from a gradual rise in crack fluid pressure causing fracture 
instability. Taking a small crack, such as that used in 
constructing Fig. 7, as a starting point, the effect of 
fluctuations (in particular increases) in crack fluid pre- 
ssure, and hence 2, on the stability of the small crack may 
be assessed from the energy point of view. 

Thus those portions of the curves in Fig. 1 with negative 
slopes indicate the conditions under which the total strain 
energy around the flaw decreases with a small increase in 
2. For example, when P2 = 0.1, only the orientations fl = 
0 --, 30 ° show a negative energy of formation, but there is 
an increase in strain energy with increase in 2. However, 
when P2 = 0.3, all orientations fl = 0--* 90 ° show a 
negative energy of formation, and the orientations 
60 ~ 90 ° show a decrease in strain energy with increases 
in 2 up to 2 = 0.5-0.6. 

Such cracks are therefore able to accommodate an 
increase in 2, because this is accompanied by a decrease in 
stored strain energy. This is an equivalent expression of 
dilatancy hardening, recorded experimentally (cf. Ed- 
mond & Patterson 1972, Ismail & Murrell 1976) as a 
rising stress difference with increased strain at constant 
fluid pressure, for the more natural conditions of rising 
fluid pressure under constant applied effective stress that 
may exist in many rocks during metamorphism and burial 
(of. Norris & Henley 1976). Once the positively sloping 
portions of the curves in Fig. 1 are entered beyond the 
strain energy minima shown, then a small increase in fluid 
pressure in the crack results in an increase in stored strain 
energy, and the increased fluid pressure cannot therefore 
be accommodated. The turning points of these graphs 
thus mark the points at which the flaw may become 
unstable and fracture initiation may occur in response to 
the increased fluid pressure, provided that the necessary 
tensile stress for rupture exists at the crack tip. Reference 
to the results presented earlier will show if this condition is 
satisfied. 

The second part of the problem referred to above must 
now be examined, that is, having reached the point of 
fracture initiation and instability, which orientations of 
the small crack are able to undergo spontaneous growth 
by increasing their length. The criterion used is that the 
total strain energy must decrease for growth to be 
spontaneous. The results reported here are for cracks 
increasing in half-length from C = 1.5 to C = 9.5, the 
change in stored strain energy being calculated for each 
increase in half-length of 1.0. The crack shape was 
maintained at ~o = 0.01 and the results are shown as 
graphs of strain energy vs crack half-length, for specified 
conditions of 2, P2, and ft. The fluctuations and changes in 
fluid pressure that might accompany very rapid crack 
extension have not been examined here, and the con- 
ditions modelled are those of rather slower growth that is 
dependent on the maintenance of a constant fluid pressure 
as the driving mechanism for hydraulic fracture. In 
practice the volume of fluid in the crack and the crack 
shape itself may change; the conditions of hydraulic 

Table 1. Values of 2 above which the minimum stress at the crack tip is 
located symmetrically to the crack 

P2 fl=O 10 20 30 40 50 60 70 80 90 

0.1 0.44 0.41 0.29 0.77 
0.3 0.52 0.47 0.46 0.58 0.87 - -  
0.5 0.50 0.49 0.48 0.56 0.67 0.75 0.85 - -  
0.7 0.49 0.49 0.50 0.54 0.58 0.63 0.66 0.71 0.71 0.71 
0.9 0.50 0.50 0.50 0.51 0.53 0.55 0.56 0.57 0.58 0.58 

fracture growth imply that fluid is able to migrate into the 
crack to maintain the fluid pressure in order that crack 
extension may proceed. This point will be developed 
further. 

Clearly, the model employed here can only be evaluated 
numerically for those situations where the crack grows in 
a straight line along its length, and the growth of curved 
fractures, etc. cannot be modelled, though some quali- 
tative statements concerning their origin can be made (see 
later). Thus only those cracks that have a symmetrically 
oriented minimum stress at their tips will be examined 
quantitatively. The relevant conditions, corresponding to 
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discussion only as for these the minimum stress is positioned asymmetri- 

cally at the crack tip. S¢¢ Fig. 2 - - P 2  = 0.1. 
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field A in Fig. 5, for which this occurs are given in Table 1. 
Finally, the growth model described and evaluated is a 
quasi-static one and cannot be applied to those cracks 
where dynamic effects become important. 

The results of the numerical analysis are shown in Figs. 
8-12 where the change in strain energy with increasing 
crack length is plotted for each orientation, and each 
figure is for a different value of minimum applied effective 
stress P2, as indicated. The solid curves are for those 
orientations which have a minimum stress developed 
symmetrically at their tips (cf. Table 1). The dashed lines 
are for asymmetrically positioned minimum stress and are 
shown to indicate the conditions where the transition 
from symmetrical to asymmetrical minimum stress might 
occur .  

The set of results presented in Figs. 8-12 show a 
number of features. Most of the relevant (i.e. solid line) 
curves are concave upwards in these graphs i.e. 
d~W/dcZ> O, where W= stored strain energy. Clearly 
dW/dc is negative, falls to zero and then becomes positive 
and begins to increase in magnitude (a few curves are close 
to straight lines, e.g. Fig. 12, and the positions where 
dW/dc = 0 have not been defined within the space of the 
graph shown). During the gradual increase in crack 
length, growth occurs spontaneously when dW/dc < O. 
From the minimum point onwards, energy would have to 
be supplied from outside the system to allow further 
growth. The crack length at which d W/dc = 0 provides an 
estimate of the relative length of spontaneous crack 
growth. For example, it is easy to distinguish between 
conditions and orientations where spontaneous growth is 
quickly arrested and where crack growth occurs freely for 
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some length. This summarises the principal way in which 
these results help to understand the growth of hydraulic 
fractures. 

SYNTECTONIC VEINS AS HYDRAULIC 
FRACTURES 

The results presented so far were obtained in order to 
further the understanding of the formation of hydraulic 
fractures under symmetrical and oblique biaxial loading 
conditions, with particular reference to the formation of 
syntectonic veins, frequently observed to have formed in 
abundance during the deformation of sedimentary se- 
quences at low metamorphic grades. The build up of high 
pore fluid pressures, a necessary prerequisite for hydraulic 
fracturing, in buried sediments has been discussed by 
Rubey & Hubbert (1959). Clay mineral reactions involv- 
ing dehydration will maintain high pore pressures during 
subsequent low grade metamorphism (Magara 1975b, 
Hewer et al. 1976). In addition, if sedimentary rocks are 
buried along a geotherm greater than about 12°/km, 
water will expand and contribute to sustaining these high 
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pore pressures (Magara 1975a, Norris & Henley 1976). 
Thus the formation of hydraulic fractures should be a 
natural consequence of burial and metamorphism of 
sedimentary sequences in most geological environments. 

During the burial of sedinients the effective stresses will 
be approximately hydrostatic and equal to lithostatic 
pressure, that is in terms of the model employed here, P1 
~ P2 ~ 1.0. During deformation of these sedimentary 
rocks the effective stress difference will gradually increase, 
that is, in the present model P1 is held constant and P2 
decreases. If dewatering of the sediments does not keep 
pace with burial and metamorphism, the value of 2 will 
gradually rise (cf. Rubey & Hubbert 1959). Thus the main 
cause of the onset of hydraulic fracture instability in such 
rocks will be a rise in 2 to the point where the minimum 
stress at a crack tip exceeds the tensile strength of the 
material, in contrast to the rising stress difference em- 
ployed to induce fracturing in laboratory experiments (cf. 
Ismail & Murrel11976, Phillips 1972). It is considered that 
in the natural conditions under discussion, a rise in fluid 
pressure is more important than a change in stress 
difference in causing hydraulic fracture, and thus the 
diagrams presented earlier have been drawn mostly with 
this mode of interpretation in mind. Within this frame- 
work, the numerical results obtained will now be applied 
to the interpretation of syntectonic hydraulic fractures. 

Many syntectonic hydraulic fractures in deformed 
sedimentary rocks are preserved by infillings of quartz, 
carbonate, etc. as veins. That such natural fractures 
originated as hydraulic fractures is most easily de- 
monstrated when the fractures are shear fractures and 
when they originated during a compressive deformation. 
Convincing examples have been documented by Escher et 
al. (1976) for magmatic dykes, and by Beach (1977) for 
syntectonic veins. The compressive deformation in sedim- 
entary rocks during the formation of syntectonic veins 
under low grade metamorphic conditions is usually 
accomplished by pressure solution (Rutter 1976, Kerrich 
et ai. 1977) and the silica etc. in solution in the sedimen- 
tary rock migrates to the slightly lower fluid pressure in 
the fracture and crystallises to form a vein, creating a 
natural outlet for much of the material dissolved during 
deformation (Beach 1974, 1975, Kerrich et al. 1978). 

A number of easily recognisable geometric forms are 
common in such syntectonic veins: (a) single, straight 
shear and tensile veins of considerable length, usually with 
length/width > 500; (b) short, straight or slightly curved 
shear and tensile veins, usually with length/width < 100; 
(c) single veins with a zig-zag trace; (d) curved branches 
originating perpendicularly to a vein near its termination; 
(e) vein terminations that may be singly tapering, or 
forked into many thin veins; (f) offset veins; and (g) en 
6chelon veins. 

APPLICATION OF THE NUMERICAL 
RESULTS 

Symmetric minimum stress at crack tip 
The analysis has shown that a tensile stress field is 
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Table 2. Critical crack orientation 20-30 ° . To create the minimum 
stress a2 specified, at a given value of P2, the values of 2 entered are 

required 

P2 = 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

a2 = -1 .00  0.95 0.85 0.78 0.73 0.70 0.68 0.67 0.67 
-0 .75  0.75 0.71 0.68 0.67 0.66 0.65 0.64 
-0 .50  0.63 0.63 0.63 0.63 0.62 
-0 .25  0.58 0.60 0.60 0.60 

developed at the crack tip for many values of 2 less than 
1.0 under a variety of applied stress conditions and for a 
variety of orientations (Fig. 5). Thus if the failure criterion 
is satisfied hydraulic shear fractures may grow when 2 
< 1.0. The tensile stress is developed symmetrically at the 
crack tip for many orientations and for a wide range of 2 
values, and it is inferred that such cracks will grow in a 
straight line along the prolongation of the original crack. 
From Fig. 6 it is possible to assess the orientation of the crit- 
ical crack, that is, the crack that will grow first for 
given applied stress and with a gradually increasing value of 
2. For tr2 = T = - 1.0 it is seen that the critical orientation 
is fl = 20-30 °. If fracture occurs when a smaller magni- 
tude of tensile stress is developed at the crack tip, say a2 = 
T = -0.25,  the critical orientation is still fl = 20-30 ° for 
P2 = 0.6-0.9, but is variable for P2 < 0.6 (see Fig. 6). The 
fields of symmetrically developed minimum stress (from 
Fig. 5) are shown on the graphs in Fig. 6 to determine 
whether or not the critical cracks have a symmetric 
minimum stress. Thus, straight fractures of orientation fl 
= 20-30 ° may be expected to form when P2 = 0.2-0.9 if 
the stress threshold for fracture is a 2 = - 1.00, when P2 
= 0.3-0.9 if a2 = -0.75,  when P2 = 0.5-0.9 if a2 = 
-0 .50  and when P2 = 0.6-0.9 if tr 2 = -0 .25  (see Fig. 
6). The values of 2 giving rise to these conditions are given 
in Table 2. 

The critical conditions in Table 2 may now be examined 
in conjunction with Figs. 8-12 to determine whether these 
cracks will grow on the basis that growth requires a 
decrease in strain energy, and that the minimum points in 
the curves of Figs. 8-12 therefore represent the limit of 
spontaneous growth of the crack under the conditions 
specified. Following this interpretation, it is found that the 
conditions in Table 2 give rise to spontaneous growth 
producing crack half-lengths as summarised in Table 3. 

Beyond this limit of spontaneous crack growth under 
constant applied effective stress and fluid pressure con- 
ditions, an interpretation of the mechanism of continued 
crack growth is considered; the mechanism is a quali- 
tative adaptation of the model to natural conditions likely 

Table 3. Half-lengths of spontaneous growth for critical crack con- 
ditions given in Table 2 

P2 = 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

a 2 = - 1.00 1.0 1.5 1.0 0.5 
-0 .75  1.5 2.5 1.5 0.7 
--0.50 3.5 2.5 1.0 
-0 .25  3.0 1.5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

to occur during hydraulic fracture propagation, that is, a 
drop in fluid pressure occurs during fracture growth, 
resulting from the increased volume of the crack. The 
slope of the strain energy vs crack length curves will 
change as follows (Figs. 8-12). 

(i) At P2 = 0.9 and 0.7, a decrease in 2 from 0.6 to 0.5 
changes the slope of the curves drastically, and these 
curves lose their minima, allowing effectively infinite 
crack extension to occur spontaneously; for P2 
= 0.9 only, the curves are concave downwards (Fig. 
12) and the energy release rate increases with crack 
length. 

(ii) At P2 = 0.5, a decrease of 2 towards 0.5 increases the 
length of spontaneous crack growth, though the 
curve for the critical crack fl = 20 ° is seen (Fig. 10) 
to be concave upwards and the energy release rate 
will decrease to zero during growth. 

(iii) At P2 = 0.3, a decrease of 2 to 0.6 and then to 0.5 
increases the length of crack growth by only a small 
amount (see Fig. 9); the curves are all concave 
upwards and shorter fractures will be formed under 
these conditions compared with (i) and (ii) above. 

Asymmetric minimum stress at crack tip 
Whilst the stress function analysis used permits evalu- 

ation only of straight crack growth, some qualitative 
consideration can be given to situations where the 
minimum stress is positioned asymmetrically at the crack 
tip. 

An existing fracture with an asymmetric minimum 
stress will undergo further crack growth by propagating a 
branch fracture (Brace & Bombalakis 1963, Hoek & 
Bieniawski 1965, Adams & Sines 1978), which leaves the 
main crack at right angles to its edge at the point of 
maximum tensile stress and curves towards the orien- 
tation of the maximum applied stress as it grows. Branch 
fractures are common in syntectonic veins (of. Beach 1977) 
and may be a product of second stage growth from master 
veins. An example is illustrated in Fig. 13. 

However, Figs. 8-12 indicate some further conditions 
under which branch fracturing may occur. When the 
energy release rate decreases during crack growth (curves 
concave upwards), fractures will terminate as single 
tapering structures if the minimum stress remains sym- 
metrically positioned at the crack tip (Fig. 14). If such a 
fracture develops an asymmetric minimum stress during 
growth, it may terminate by curving and tapering, and 
may also produce one or two well defined branch 
fractures (Fig. 15). These structures form the most un- 
equivocable evidence that the main fracture originated as 
a shear fracture. Such branch fractures will have an 
infiUing that is continuous in structure etc. with the main 
vein, in contrast to secondary branch fracturing where the 
texture and/or mineralogy of the infilling may be different 
from that of the main vein. 

Bieniawski (1967) has described the formation of 
terminal crack forking as a means of dissipating excess 
strain energy and kinetic energy released during very 
rapid crack growth for tensile fractures, that is as a 
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Fig. 13. Typical geometry of branch fracture; Lias slates, La Grave, 
Hautes Alpes. 
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Fig. 14. Single tapering vein terminations: (a) is from the Lias limestone 
shale, La Grave, Hautes Alpes--tbe slight sinuosity is where the vein 
crosses limestone and shale beds, and (b) is from Devonian sandstone, 
Healey Pass, Co. Kerry--the adjacent vein, also shown, has a forked 

termination (el. Figs. 16 and 17). 
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Fig. 15. Vein terminating by slight curvature and development of 
successive branch fractures; Carboniferous flyseh, Millook Haven, N. 

Cornwall. 
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Fig. 16. Examples of symmetrically forked terminations to veins; in (a) 
two adjacent veins are illustrated, in (b) the geometry at the termination 
of a vein is shown in more detail; both examples from Devonian 

sandstone, Healey Pass, Co. Kerry. 

product of dynamic crack growth. That  terminal forking 
of both shear and tensile hydraulic fractures is predicted 
for certain conditions by the quasi-static growth model 
evaluated here is seen from examination of Figs. 8-12. 
Those curves that are concave downwards on these figures 
are interpreted as indicating that an increase in the rate of 
decrease of stored strain energy accompanies crack 
growth. Such an increase in energy release rate results, as 
with the dynamic problem studied by Bieniawski (1967), 
in terminal forking of the fracture to dissipate the excess 
energy by the large increase in the formation of fracture 
surfaces. A distinction can be made between symmetric 
and asymmetric forking. 

If the minimum stress remains symmetrically po- 
sitioned at the crack tip, then this forking should be 
symmetrically developed with respect to the main fracture 
(Fig. 16). Under other conditions, again with the energy 
release rate increasing during growth, the minimum stress 
may become asymmetrically positioned at the crack tip 
(e.g. Fig. 12, when P2 = 0.9 and 2 decreases from 0.6 to 0.5 
during growth, orientations of B = 30-90 ° develop an 
asymmetric minimum stress; another example is seen in 
Fig. 11 when ~ = 40 ° and 2 decreases to 0.5). Such cracks 
should terminate by forking asymmetrically with respect 
to the main fracture (Fig. 17). Branch fractures (Figs. 13 
and 15), as propagations from main fractures, commonly 
terminate as simple tapered structures, but may also show 
symmetric or asymmetric forking more characteristic of 
main fractures growing under conditions of increasing 
energy release rate, and examples of these features are 
shown in Fig. 18. 

In addition to the critical orientations deduced from 
Fig. 6 and discussed above, Figs. 8-12 indicate that 
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Fig. 19. Irregular zig-zag geometry of veins from Carboniferous flysch, 
Millook Haven, N. Cornwall. 

Fig. 17. Two examples of veins terminating by asymmetric forking, both 
from the Eocene ftysch near Lautaret and Valfroide, Hautes Alpes. In (a) 

the main vein is slightly curved, in ( ~  it is straight. 
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(b) 

Fig. 18. Terminal forking of branch fractures (cf. Fig. 15). (a) Shows a 
more or less symmetrical forking of a branch fracture from the Lias 
shales, near Rivet, Hautes Alpes--the inset shows an enlargement of the 
termination. (b) Shows distinctly asymmetric forking of a branch 

fracture from the Eocene flysch above Lautaret, Hautes Alpes. 

spontaneous growth of other orientations may also occur, 
as follows. 

(i) When P2 = 0.9 (low stress difference) growth of all 
orientations may occur, and as 2 decreases during 
growth, extensive propagation results; w h e n / / <  30 ° 
symmetric forking is expected to form and when 
/ / >  30 ° asymmetric forking should form. When P2 
= 0.7 similar results are expected. 

(ii) When P2 = 0.1 (high stress difference), symmetric 
growth of orientations / / <  30 ° and branching of 
o r i en ta t ions / />  30 ° should occur. As 2 decreases 
during growth, extensive propagation of the / /= 
0 ° orientation will occur. Growth of orientations//  
= 10-20 ° will be limited as the curves (Fig. 8) pass 
through a minimum, and shorter, straight fractures 
will form. When P2 = 0.3, similar results are 
expected. 
Under the intermediate condition when P2 = 0.5, 
branching from orientat ions/ />40 ° will occur. As 2 
decreases, an increasing length of symmetric growth 
f o r / / =  0-30 ° will occur. At first, the 30 ° orientation 
grows most, but as 2 decreases, the 0 ° orientation 
undergoes extensive growth, possibly terminating in 
symmetric forking. 

(iii) 

I 

i 
! m 

i i , i  ii 

I l l l  

Fig. 20. En echelon arrangement of simply tapering veins from Creta- 
ceous sandstone, GaSbier, Hautes Alpes. 
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DISCUSSION AND CONCLUSIONS 

The model used in this work is in essence a simple one 
and it is as well at this stage to repeat its limitations. The 
analysis is two-dimensional and assumes that the crack is 
elliptical in shape and that the surrounding material is 
isotropic and elastic. The model does not deal with either 
curving cracks or with cracks that are so close that they 
interact. In spite of the simplicity of the model it is felt that 
the theoretical results do help in understanding the 
growth of hydraulic fractures in porous rocks under 
effective applied stress. 

Tapering, curving, branching and forking are impor- 
tant fracture geometries and their origin has been in- 
terpreted in terms of the quasi-static changes in stored 
strain energy during hydraulic fracture extension. Also, 
the commonly observed occurrence of long straight 
hydraulic shear fractures in deformed sedimentary rocks 
is explained by the maintenance of a symmetrically 
positioned minimum stress at the fracture tip, a feature 
not found in dry shear fractures. 

Continued spontaneous crack growth has been in- 
terpreted to result from a gradual drop in the fluid 
pressure in the crack as a natural consequence of increas- 
ing crack growth. If however the value of 2 remains 
constant, or does not decrease sufficiently to allow 
extensive spontaneous crack growth, then the fracture will 
be arrested when the rate of change in stored strain energy 
becomes positive. The fracture may become infilled by the 
precipitation of quartz, etc., the stress conditions at which 
spontaneous growth originally occurred may return, and 
a further short extension to the fracture may take place. A 
number of possible fracture geometries may arise under 
these conditions, none of which can be adequately 
explored using the results of the present model. Possibly 
the fracture will propagate along its length again, or it 
may grow by forming a branch fracture, as already 
explained and illustrated. However, continued periods of 
crack growth may give rise to formation of a zig-zag 
geometry, or under some conditions the first fracture may 
be sufficiently stabilised that renewed fracture growth 
occurs by successive formation of new fracture sym- 
metrically related to the first and giving rise to en 6chelon 
patterns. These last two geometries are illustrated in Figs. 
19 and 20. 

Cotterell (1965, 1966) has discussed the stability and 
direction of fracture extension for cracks in tension, and 
notes that a crack may grow in a straight line along its 
length, diverge widely from this, or diverge and then 
return alternately giving a regular zig-zag pattern. The 
stability of the crack growth is related to the distribution 
of the lines of equal shear stress around the fracture tip, 
and the model employed here could be extended to 
evaluate this feature for hydraulic fractures as an aid to 
understanding some of the more irregular fracture 
geometries such as that illustrated in Fig. 19. 

Finally, whilst only hydraulic shear fractures can 
develop asymmetric terminal forking, a curved trace or 
branch fractures--related to the asymmetrically po- 
sitioned minimum stress--their absence does not nec- 

essarily indicate that a fracture originated as a tensile 
crack, because under many of the conditions evaluated in 
this work, hydraulic shear fractures, like tensile fractures, 
have a symmetrically positioned minimum stress and 
both may terminate as single tapered or as symmetrically 
forked structures. Extensive growth of hydraulic shear 
fractures is most likely to occur under conditions of 
relatively low differential stress, and short shear fractures 
will form when the stress difference is relatively higher. 
Extensive growth of hydraulic tensile fractures may occur 
throughout the range of applied effective stresses used in 
this model. 

It is hoped that the interpretations presented here of 
natural fractures in terms of a numerical model will lead 
both to a more detailed study of the geometry of veins and 
other hydraulic fractures and to further development of 
the theoretical work. 
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